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We discuss a number of mathematical results that are relevant to the statistical 
mechanics of a model of radiant cavity in which the electromagnetic field 
interacts with a nonlinear charged oscillator. In particular, we show that energy 
equipartition in the sense of Jeans would exclude local exponential instability of 
orbits; it would also prevent the existence of significant finite invariant measures 
on a given energy surface. A phase space of infinite total energy is defined, and 
an invariant measure in it is built, for which different modes of the field are 
statistically independent. 
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1. I N T R O D U C T I O N  

The ergodic properties of conservative classical H a mi l t on i a n  systems with a 

finite n u m b e r  N of degrees of freedom are reasonably  well understood.  

Even if precise ergodic properties can be established only in a very l imited 

n u m b e r  of cases, nevertheless ergodic theory provides a general  useful 
frame for unde r s t and ing  the statistical behavior  of classical physically 

interest ing systems with a finite n u m b e r  of particles. 

Matters are different when  deal ing with an  infinite n u m b e r  of degrees 
of freedom, a case which, on the other hand,  possesses a definite physical 
interest. Indeed,  while in  f ini te-dimensional  systems some of the mathemat i -  

cal hardware  is somewhat  n a t u r a l - - a l l  norms  are equivalent,  intui t ive 
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invariant measures exist, etc.--so that we are sometimes justified in brush- 
ing it under the rug, this is not so for infinite-dimensional systems. For 
instance, even finding suitable phase spaces and establishing existence and 
uniqueness of solutions by no means constitute trivial steps. 

Equilibrium of matter with radiation constitutes the most prominent 
problem in this category. Within the framework of classical physics a 
famous solution was proposed by Jeans. O) Jeans's conjecture is based on 
the generalization of the equipartition theorem of classical statistical me- 
chanics to this infinite-dimensional case. The legitimacy of such an exten- 
sion is, however, far from unquestionable. Should this "theorem" be false 
then the classical problem of ether and matter in equilibrium would have to 
be completely reexamined. 

Several years ago, the interesting idea was proposed that the classical 
approach to the problem of black-body radiation might be fruitfully 
reconsidered in the light of recent achievements of ergodic theory and 
nonlinear dynamics, (2-5) in order to check the a priori assumptions on 
which the Rayleigh-Jeans law rests, i.e., to check 

i. whether a trend towards some sort of statistical equilibrium is 
exhibited by a radiant cavity in which a nonlinear mechanism of energy 
exchange between the normal modes is at work. 

ii. whether, in the eventual equilibrium state, equipartition of energy 
holds. 

The problem is a difficult one to deal with in general terms; a specific 
model was devised by Bocchieri, Crotti, and Loinger (2) which proved 
amenable to numerical analysis. (2-6) 

All these numerical investigations, adopted to a varying extent the 
strategy of inquiring the "stochasticity" of the BCL model by looking for 
one or another of the peculiarities by which this quality manifests itself in 
dynamical sytems with finitely many degrees of freedom. However, in the 
absence of an ergodic theory of infinite-dimensional Hamiltonian systems 
comparable to the one available for the finite-dimensional case, this ap- 
proach may turn out to be exceedingly naive: the more so the subtler the 
techniques being borrowed from the finite-dimensional theory. 

As a matter of fact, as was pointed out on more than one occasion, 
"stochasticity" is a quite vague notion, the widespread, informal use of 
which is usually justified by the underlying rigorous categories provided by 
ergodic theory (7) but looks pointless in the absence even of the necessary 
preliminaries of the latter. As a definite example the Liapounov characteris- 
tic exponents (LCE) are a prominent tool in establishing the stochastic 
properties of finite-dimensional systems. It is far from obvious, however, 
that they remain equally significant in the infinite-dimensional case. 
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In the present paper, by discussing a specific model, we point out some 
characteristic difficulties of infinite-dimensional systems. More precisely we 
present here some results that provide the mathematical  preliminaries to the 
ergodic theory of the BCL model, namely, (i) identification of various 
phase spaces, i.e., of functional spaces in which the equations of motion 
define a well-set Cauchy problem, (ii) construction of invariant measures in 
these phase spaces. 

Actually we are able to set up a phase space appropriate to describe 
the time evolution of finite energy states. We cannot answer the question 
whether an invariant measure on the energy surface exists. Rather unex- 
pectedly existence of such an invariant measure would imply Jeans's 
conjecture to be false. Thus ergodicity in this sense and equipartition are in 
contrast. One consequence of this fact is that it removes one of the 
assumptions which appear  to be essential for the LCE machinery to be 
meaningful in statistical mechanics. In fact we show that energy equiparti- 
tion would imply the vanishing of LCE. In other words, positive exponents 
preclude energy equipartition, in sharp constrast to the finite-dimensional 
case. In Section 5 we discuss a phase space in which the generic state has 
an infinite total energy and we describe an invariant measure in it which is 
a generalization of the canonical measure for a system of finitely many  
oscillators; a noteworthy aspect is that, in this case, the motion of the 
mechanical oscillator is, with probability 1, nondifferentiable. The metrical 
transitivity of this measure is left as an open problem which, in our opinion, 
might prove a rewarding task for future investigation. In the concluding 
Section 6, we comment  briefly on other aspects related to our previous 
work and on some questions that can be raised about  the significance of the 
BCL model. 

2. JEANS'S CONJECTURE AND BCL MODEL 

� 9  Thus, excluding the impossible case of a system having infinite energy, we see that the 
temperature of a perfectly structureless medium ought to be invariably zero. Whenever an 
exchange of energy takes place between the medium and a material system placed in it, the 
medium must always gain energy and the rest of the system must always lose energy. The final 
state can therefore only be one in which all of the energy of the material system has been 
transmitted to the medium, and both are at zero temperature. (1) 

Stated in "dynamical"  terms, Jeans's expectation is that 

lim 1 fo r r~oo -T E.( t)dt= 0 

En(t ) being the total energy of any mechanical or field oscillator. The time 
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average is evaluated along an orbit on a given energy surface, and the result 
should hold for "most" reference orbits. 

The equipartition theorem of classical statistical mechanics rests upon 
the existence of a "natural" ergodic finite invariant measure. If one requires 
that time averages be independent of the reference orbit up to sets of 
(Lebesgue) measure zero, it follows that these averages are given by 
microcanonical ensemble averages: in particular, equipartition holds. 

The legitimacy of Jeans's extrapolation to the infinite-dimensional case 
is by no means obvious. It would be interesting to know whether, also in 
this case, there is one more or less "natural" assumption of what the null 
sets are, and whether this assumption, together with the requirement that 
time averages be independent of the chosen orbit up to null sets is sufficient 
to single out one ergodic finite invariant measure on the given energy 
surface. 

However, this would exclude Jeans's expectation. In fact, this expecta- 
tion is inconsistent with the very existence of a finite invariant measure 
having the prescribed null sets. For, suppose that 

lfo  n~lim ~ E n ( t  ) dt = 0 

for ~ almost all initial data, with ~ some finite (normalized) invariant 
measure. Then 

lim I f  forE. T~oo-T d~ (t) dt= ff. n 

the ensemble average of En: hence, E, = 0 Vn. However, ~ n E ,  --- E the 
total energy. If /L is supported by the manifold of total energy E, by 
monotone convergence we get 0 = ~ , , E  n = ~ , E  n = E ,  which is absurd. 

The above remark suggests that such concepts as ergodicity, equiparti- 
tion, etc. will not play here the same role as in the finite-dimensional case 
(and we will see that the same holds for LCE as well). To clarify the 
situation'in full generality is of course a difficult problem and we wilt study 
a specific model formerly proposed by Bocchieri, Crotti, and Loinger. (2) It 
will be enough for our purposes to recall that the model describes the 
radiation trapped in between two perfectly reflecting plane mirrors and 
interacting with a nonlinear charged oscillator in the form of a charged 
plane placed midway and sliding parallel to the mirrors. In a suitable 
reference frame the relevant equations are 

~2A 1 02A _ 4~r oS(x)~ 
OX 2 C 2 0 t  2 C 

m~ = o 8A (0, t) 
c Ot e~z 3 -  m~o~z 

(1) 
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with the boundary conditions A(___ l, t ) =  0, 2l being the distance between 
the mirrors. Here z is the displacement of the oscillator, A is the z 
component of the vector potential, and o and a measure the charge and the 
nonlinearity of the oscillator. 

In Ref. 4 we have shown formally that (1) is an infinite-dimensional 
Hamiltonian system, with the energy given by 4 

E = l m z 2 + g a z 4 + ~ f l _ ,  4~rc 2 "-~x) + - - ( - ~ t t  ) dx+ lm~~ 

(2) 

3. THE FINITE-ENERGY PHASE SPACE 

A preliminary step to the study of the statistical behavior of the model, 
is setting the question of existence and uniqueness of the initial value 
problem for Eqs. (1). This is not a trivial problem and apart from the mere 
existence statement its solution will provide qualitative information about 
the character of the orbits, which will be of use in the sequel. One rather 
obvious choice is to consider finite-energy solutions first: this leads to the 
familiar energy-space of the system. In fact we will show in Theorems I-3 
that for any assignment of initial conditions (A(x,O),A;(x,O),z(O),~(O)) 
such that E defined in Eq. (2) is finite, the initial-value problem is well 
posed and the orbits lie on an infinite-dimensional manifold E E in a 
suitable Hilbert space. 

To formulate the Cauchy problem in a Hilbert space setting, it will be 
convenient to rewrite the differential equations (1) as a first-order system: 

2 = y  

aA ( t ,x )  = v ( t , x )  
3t 

(3) 
= - o2z_ 3 _ ~ 1 6 2  

m cm 

3v (t ,x)  c 2 32A(t'x) - -  = - -  + 47rcoy3(x) 
3t ~x 2 

We take up the linear case a = 0 first. Let C and L2(I) have the usual 
meaning and denote by 111(1) the space of absolutely continuous functions 
on I -- [ -  l, l] having a square summable derivative and vanishing at +_ l. 
Let X be the complex linear space: 

X = C X H~(I)  X C X L2(I)  (4) 

4 Eq. 2 represents the energy, not the Hamiltonian. In the latter an interaction term would 
appear. 
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A point in X is then a quadruplet ~ = (z, u, y, v), X is a Hilbert space when 
given the scalar product 

2 . . . .  4_~ (" cl-~' du" 1 f_' , vd  x (~', ~")x=  ,~oZ z + ax + y'y" + - -  _ ~ (5) 
3-  t dx dx 4~rc 2 

The Cauchy problem for Eqs. (3) with a = 0, can be formulated as the 
problem of solving in X the equation 

d~ 
- T ~  

dt (6) 

~(0) = ~0 

where the linear operator T is formally defined by 

T~= (y ' v '  -c~ - a-q-v(O)'c2 82A + 4r176 812 (7) 

It will be presently seen that the domain D(T)  of T can be so chosen that T 
is a skew-adjoint linear operator in X. 

I.emma. Let a(~,~*) be defined on X • X by 

= (zy* - ~*y) + ~ f_tt(u~* - ~*v) + o a(~,~*) 4~'c 2 _ ~ [ z~*(0) - u(O)~* ] 

(8) 

then a( . ,  .) is a bounded skew-symmetric form on X x X. If G is defined in 
X by 

a(~,~*) = (G~,~*)x V~, ~* E X (9) 

then G is a (bounded, skew-adjoint) compact and invertible linear operator 
(see Appendix A). 

By computation one sees that G~ = ~ is the unique element in X 
satisfying 

_ ! [  o 1 
~ = , 4  Y + S-d u (~  

8z~ 1 4~ro 
8 X  2 --  C2 V "1" C Z ~ ( X )  (10 )  

~ = u  

Define D(T)  = Rg(G). Then the above shows that 

c 2 82u + 4rrocP6(x) = v 
8x 2 

(11) 
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and 13(0) = u(0). Since v E L2(I)  and u(0) makes sense by the continuity of 
u ~ Hd(1), this shows that the right-hand side of Eq. (7) is well defined 
whenever ~ ~ D(T) ,  and that T is inverse to G. 

Theorem 1 follows from the above. 

Theorem 1. T is skew-adjoint and possesses a pure point spectrum. 
Therefore T generates a unitary group ert which solves the linear problem. 
To each eigenvector u,, of T there corresponds a constant of the motion: 

g n = [Cnl = [(~,Un)xl 

Also t---)e rt is an almost periodic function; this means that every solution 
of the equations of motion is almost periodic. 

The set of eigenvectors (un} and the corresponding set of eigenvalues 
f~, are reported in Appendix A. Consider now the nonlinear case a v ~ 0. 
System (3) will now be formally rewritten as 

at - TI~ + W(~) (12) 

where W is the nonlinear operator in X defined by 
O/ 

w ( 0  = - m I(K0,012(K0, OK, (13) 

where K o = (1, 0, 0, 0) and K 1 = (0, 0, 1,0). The following is an existence and 
uniqueness theorem for the solution of Eq. (12) which will provide a basis 
for all subsequent considerations. 

Theorem 2. For any ~0 ~ X Eq. (12) has a unique weak solution 
z( t)  E Co(N,X ) such that ( (0)= 80. By weak solution of (12) here it is 
meant that V, /E  D(T),(~(t) ,~l)x is C I in t, and 

d (~(t), B)x = - (~(t), T~l)x + (W(~( t ) ) ,  71) x (14) 

The proofs of this theorem and of Theorem 3 below are given in 
Appendix B. One minor difficulty is that K 1 q~ D ( T )  so that W does not 
map D ( T )  into itself. This is why Theorem 2 is not completely covered by 
standard results. 

One important consequence of this theorem is that, defining c,(~) 
= (un, 0 for ~ ~ %, cn(~(t)) is C 1 in t and that 

c~(t) = ianc n + ow.l~(~(t))12~(~(t)), 1,, = (K1, u~) 
(15) 

~k n ~- (U n , K o ) ,  ~ ( ~ )  = X~knCn(~) 

The infinite system of Eqs. (15) is the formulation of the dynamics of 
the BCL model to be used in Section 5. This formulation and Theorem 2 
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define the dynamics of the BCL model in the space % of complex 
sequences (r s.t .  Y~[c.]2 < + oo. 

The result concerning continuous dependence of the solution on the 
initial data is as follows: 

Theorem 3. Let Ut40 = 4(0 be the solution with initial condition 40 
at time t. { Ut) is a group of nonlinear operators in %. Then Vt, Ut is 
uniformly continuous on bounded subsets of %. 

4. EQUIPARTITION EXCLUDES EXPONENTIAL INSTABILITY 

In this section we shall make a partial use of the above results to 
investigate one important aspect of the statistical behavior of the model. 

As is well known, in the case of finite-dimensional Hamiltonian 
systems, positivity of the maximum Lyapounov exponent for almost all 
initial conditions implies strong statistical properties. (8) We shall investigate 
how far this carries through the BCL infinite-dimensional model. 

Restricting to real solutions, 5 the variational equation associated with 
(12) reads (9) 

d4 
- T4 + B( t )4  (16) 

dt 

where the bounded linear operator B(t)  is defined by 

B ( t) = - 3az2( t)( ., K0)K 1 

and z(t)  is read along a chosen reference orbit. Attempting a generalization 
of the LCEs to this infinite-dimensional case involves the investigation of 6 

-1 t logll4(t)l [ (17) lim 
t---~ oo  

4(0 being the solution of Eq. (16) corresponding to a generic initial vector 
4(0) E %r, where %r is the real invariant subspace of %. 

In the following we will show that if equipartition holds then the limit 
(17) is always zero. In fact we have the following proposition: 

5 The adoption of a complex phase in Section 3 was mainly motivated by the reason that it 
made it easy to derive Eqs. (15), which describe the cavity as a numerable set of interacting 
oscillators. 

6 In Ref. 6 no definition of what should be meant by LCE in the infinite-dimensional case is 
given. However, the procedure adopted therein shows that the authors consider LCEs to be 
given by limlwofllv, lu being the LCEs of a finite (N-degrees of freedom) approximation of 
the cavity. This definition differs from (14) by the interchange of the limits N---)0% t---.x oo. 
This interchange is hardly acceptable, if only because lim~v~limt~oo does not depend on 
the norm chosen in each 2N-dimensional phase space, while l imt~Jimu~oo obviously does. 
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Proposition. Let 

lff lim Eo( t ) dt = 0 

along a given reference orbit, E 0 being the energy of the 
oscillator. Then 

mechanical 

1 
lim ~ logll~(t)[ I = O, V~(O) v ~ 0 

l 

along the same orbit. 

For the proof we prepare the following comments: 
Let ~(t) = e 7"t~0(t). Then, if cp(t) is a strong solution of the equation 

dq9 _ e_VtB(t)ertc p = V(t)ep (18) 
dt 

with rp(0) = ~(0), one easily sees that ~(t) is a weak solution of Eq. (16) with 
~(0) as initial condition. Existence (and uniqueness) for solutions of (18) is a 
standard result; in fact, V(t)  is a continuous map from R into B(%~) (the 
bounded linear operators in %~ with the operator norm), since, we know 
from Theorem 2 that z( t )  @ C 1. Moreover one has the estimate (1~ 

II~(t) - ~(0)l l  < e'llvll'tll Vll , l [~(0) l  (19) 

where 

llVll,= sup IIV(s)ll~(%,) 
O < s < t  

Proof  o f  the Proposit ion.  Choose a ~- > 0 and let I n = [nr (n + 1)r]. 
Let z . ( t ) ,~ . ( t ) ,  V.( t )  be defined in [0, ~-] by z . ( t )  = z ( t  + n.r), ~n(t) = rp(t + 
nr Vn( t )= V(t  + n.r). Denoting by /T~ c the energy of the mechanical 
oscillator ~l ,,,~....2 -r- ~l rnco2z 2 + �88 az 4 averaged over IK, we shall see below that 

where 

I[ VKII~ ~ X(T)E g (20) 

1 

Then, by Eq. (19) one has 
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where E is the total energy. Since cpK(0 ) = cpK_ I(T), we have 

II~K(T)I[ 1 < e ~(0 E~-X(~-)Eo K 
II~x-&')ll 

Let aK = II ~g(z)ll/ll ~g-  1(~)11; by choosing ~" conveniently (e.g., such that 
exp[~-~(~-)E]~-X0-)E < 1/2} we have 11 - aK[ < 1/2 so that 

Iln~KI < 211 - ~KI < 2exPI~(~)E]~X(~)E~ 
and finally 

1 In Ilq~ 
I1~(o)11 

= ln 
= __1 In 

nr 

II~.--I(T)II j 
11~(0)11 

IIq0.-,(~)ll II~~ I1~1(~)11 
II~n-2(T)ll II~n--3(~')ll II~0(T)II 

1 n - 1  2 n - 1  

= --m- x~__l lnaK < n )t(~')exp [ ~'~(~')E] x= ~1E'ff  

= 2X(~-)exp[~'X(~-)e] Eo(s)ds-~O as n ~  c~ 

Since II~(t)[I -- Ilcp(t)ll because e re is unitary, the statement follows. 
As to the proof of (20) notice that 

IlVgll.----IIBK[I.-->Na sup ]z2(s)] 
s E [0 , r ]  

By Poincar6's inequality for C 1 functions 

II VK[I ~ < 3 a {  2Ta0c'z2dt + 2"rfo~Z2dt} 
and fitting in various constants gives (20) and concludes the proof. �9 

Thus a positive LCE and equipartition cannot coexist. It is of some 
interest to notice that numerical experiments (6) failed to reveal this fact. 
The point is, of course, that any numerical computation implies some sort 
of truncation to a finite number N of degrees of freedom; the task of 
estimating large time limits becomes then particularly tricky. The above 
result brings to the forefront in an impressive manner the kind of problems 
mentioned in the Introduction. Many other evolution equations of mathe- 
matical physics define dynamical systems with infinite-dimensional phase 
space which would be interesting to study in the framework of ergodic 
theory. In some cases it may well happen that the underlying phenomenol- 
ogy justifies some kind of cutoff: for example, solutions of the Navier-  
Stokes equations are attracted by finite-dimensional subspaces so that the 
physicist feels justified in performing some finite-mode truncation. 
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Instead, the electromagnetic field possesses an actual infinity of de- 
grees of freedom; otherwise the ultraviolet catastrophe would be no more 
than a harmless mathematical pathology. Therefore, it is very likely that in 
any computation the correct procedure limt_~lim~_,~ would lead to 
different results from the "thermodynamical limit" lims__,~limt__,~ o . On the 
other hand, numerical computations can give direct information only on 
some kind of limu_~limt__,~; with the result that any phenomenon reminis- 
cent of the "stochastic transition" discovered in this way may well be of no 
relevance to the actual infinite-dimensional system. 

To summarize, both Liapounov exponents and stochastic transition are 
concepts whose precise relevance to the problem at hand is far from clear 
and should be handled with care. 

5. REMARKS ON THE CASE OF INFINITE ENERGY 

That the system of matter and ether inside an enclosure might possess 
an infinite energy was regarded by Jeans as "an impossible case. ''(1) Since 
then, the development of quantum field theory has been accustoming 
physicists to the idea that the electromagnetic field can be a very pathologi- 
cal mathematical object. 

In this section we will show that in the present case, two circumstances 
at least suggest that a phase space of infinite energy might be the proper 
setting for a discussion of ergodic properties of the BCL model. These are 
that one such space is actually available, i.e., the equations of motion of the 
cavity define in this space a group of (nonlinear) continuous evolution 
operators--and that in this space, unlike the space of finite energy, one 
invariant measure (at least) can be found by the procedure of finite- 
dimensional approximation. 

In other words, the statistical mechanics in this space is the limit 
N ~ oo of the statistical mechanics of a system of N oscillators. 

In order to define this phase space, consider in % the norm 11~112_1 
= ~f~-2[cn(0[2, and let %_ 1 be the space obtained by completing % in this 
norm. Points in %_ 1 may be considered to be the representatives of states 
of the cavity, for which y a221c.I 2 < ~ .  

The evolution of states in the space %_ 1 is described by the following 
theorem: 

Theorem 4. The group { Ut} in % extends in a unique way to a 
group /.7 t of nonlinear operators in %-1. Ut is %-1 continuous in t; 
moreover c,(t) = c~(Utx ) obeys Eqs. (15) for all n and Vx E %-1. 

Proof. The estimate (B.3) holds in the % ~ norm as well: in fact, all 
the estimates leading to (B.3) can be rewritten in the %_ 1 norm. To see this, 
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one needs only take notice that q9 is a bounded functional on %_ 1: 

(21) 

From (B.3) one sees that U, is %_ 1-uniformly continuous on %_ l-bounded 
subsets of %, and the first statement of the theorem follows. The continuity 
of 0 t with respect to t is also proved, by the estimate (B.3) in the 
%_ 1-norm. In fact this estimate shows that if ~n E {3C converges to x ~ %_ 1 
in the %_ l-norm, then Ut~, converges to Otx uniformly with respect to t in 
compact sets of the line. 

Now, observe that ~ and c, extend, as bounded functionals, to %_ 1. 
Then, since en(~K(t))-->K_~Cn(X(t)) uniformly on bounded intervals, the 
last part of the theorem follows. %_ ~ has been obtained, regarding the 
cavity as an assembly of infinitely many oscillators and allowing their total 
energy to be infinite. As a matter of fact, there is another way in which one 
may represent the BCL model as a system of infinitely many oscillators; 
this is also the way referred to in Ref. 4. It consists in expanding A (x, t) in 
a sine series and considering the complex amplitudes of the expansions as 
oscillator coordinates. In this way, one finds the following system of 
infinitely many equations: O) 

jC n = Oa2n+ l Y  n 
o o  

-~ = ~ o y  + 2OaoC ~ oa22 1 lXn 
0 

? K  = - -  r lXn  - -  C~O 1~ (22) 
? =  - -  r  

where O)2n+l = (2n + 1)rrc/2l and c is a parameter containing o,m,c, l. The 
energy of the cavity is now given by 

E = mc2( ~n [[x"12 + lynl2] + Ix[2+ lY[2) 

For all states ~ ~ X the amplitudes x,,  y ,  are well-defined quantities, that 
describe the state of the oscillators of the "free" cavity (7 = 0, a = 0). 

The sum inside the curly brackets in this expression of E defines in X 
(or in %) a norm equivalent to the one that we have actually used. 

Referring to the oscillators described by (22) might look more conve- 
nient, because the material oscillator is just one of them. 

Nevertheless, the space obtained by completing X in the norm 

En-Z(lxnl2  + lyn[ 2} + Ix12+ lyl  = 
n 

is not the same as %_ 1; in fact, y does not extend as a bounded functional 
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to %_ 1 since, as already remarked, K1--i.e., the vector defining the velocity 
of the mechanical osci l la tor--~ D(T).  In this new space no theorem 
analogous to Theorem 4 can be given. The physical reason seems to be 
that, as the energy of the field grows to infinity, the mechanical oscillator is 
forced into a motion of a very irregular nature, for which no instantaneous 
velocity y can be defined. Thus its kinematics (if not its statistics) looks like 
that of a Brownian particle. 

In %_ 1 a Ut-invariant measure can be obtained, by the procedure of 
finite-dimensional approximation. To get such an approximation, consider 
system (15) truncated to N oscillators: 

c~(t) = O, In[ > N 
2N (23) 

-- 1~-~n~n N~ N c'.(t) = i .c. + aK K I"1 < N -N 
Equations (A.4) have been used to get t,. = iw-1X n. Using the same Eqs. 
(A.4) one sees that the ~.'s are real numbers, so that, by writing c~ = p .  + 
i~ .q .  with realp~,q~ one gets the system 

= - a n q  n - aw-  ~ AKaKq K p~ 2 Ift.A. ~ AK?tt[ PgPt + ~]k~lqkql 
k,l= - N  K= - N  

q'n = Pn + ao~-1A n 2 XKXZ[ PLOP, + al, atqKqz N AXPK 
K,l= - N  K= - N  

Inl < N 

(24) 

= q'n =0 ,  I " I > N  
This is a Hamiltonian system, with the Hamiltonian function 

1N ( ,~ )2 
2 2 a hK~t[pKp l + 9Kf~tqKql] 

H N =  2 -NE (P2n + f]nqn) + ~ K,I=-N 

Thus (24) defines a flow Uu(t ) in %_ 1 thanks to usual results of the 
theory of ordinary DEs. A measure on %_ 1, invariant for this flow is easily 
found: suppose now that the Pnq, are random variables defined on some 
probability space, and that  they are distributed according to the densitY 

e n e X p ( - - o - 2 H N ( q - N ' ' ' q N ; P - - N ' ' ' P N ) )  I I  WO(Pj,qj) (25) 
]j[ > N 

6,  being a normalization constant, and W 0 an arbitrary normalized density 
with a finite variance. Since the expectation value of ~'~n21Cn[ 2 is finite 
with probability 1 (25) defines a Borel measure t~U.~ on %-1, that is 
obviously invariant for the flow UN(t). 

The following results can now be proved: 
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Proposition 1. 
measure go on %_ i. The characteristic functional of #o is 

02 + iO)K o - ~1121, Mo(z) = c f ~  f[JjdOM('l,O)exp[- T ll('/ 

As N--> oo, the measure/zN, . converges weakly to a 

(26) 

M(7,0) being the Fourier transform of e -(x2+y2)2. 

Proposition 2. Vx ~ %-1, limu~ooUN(t)x = Utx (in % i-norm). 

Proposition 3. /zo is Ut invariant. 

All these results are proved in Appendixes C and D. The measure/~o 
might also be obtained as the limit N ~ oo of microcanonical N-oscillator 
measures with energy N~. Some simple properties of the measure /~o 
become evident in the representation provided by the variables x,, y~. 
Referring to these variables we see that, despite the fact that/~ describes a 
possible equilibrium ensemble for an infinite system of interacting oscilla- 
tors, it looks like the one describing perfect oscillator gas] In fact one has 
the following proposition: 

Proposition 4. All the x.,  y. 's with the exception of y extend, as 
linear functionals, to %_ 1. Any two of them with n > 0 are independent 
Gaussian random variables on the probability space (%_ t,/s.). 

Proof. To prove the first statement, consider x . , y .  and x as 
bounded linear functionals on %, and let K~(X),K~(/),Ko be unit vectors 
spanning their respective Cokers. By using (A.4) one easily sees that all 
these vectors lie in D(T),  so that Vn E % 

'Xn(U)] : ~j ~(g(n x) )Cj(U) <~[ ~j ~2lcj(g(n x) )1211/2[ ~j ~-~;2[cj(u)[2] ]/2 

= II zg.(x)ll Ilu[1-1 

Let ~ = aK. + bK m, n v a m, n v a O, m --/= 0 in (22): 

Mo(aKn+ bKm)= c;f_~oodydOM(y,O)exp [ ~-[7~ 02)] 

• e x p [ -  02 2 T (a + b2)] 

G 2 =expl  a21exP[ yb21 
7 Of course, a much more surprising result of this kind is met in the classical approach to 

paramagnetism. 
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Since Mo, as a function of a, b is just the joint characteristic functional of 
the random variables (K n, x) and (K m, x) with x a sample in (%_ 1, g0) this 
completes the proof. 

6. CONCLUSIONS 

In this paper we have attempted to provide some mathematical 
clarifications on the dynamics of a model of a radiant cavity. These 
clarifications are essential if one aims to pass from the provisional stage at 
which the investigations on this model have been set up, to a more 
sophisticated and rigorous kind of analysis. The upshot of our analysis is 
that certain mathematical constructions taken for granted in the finite- 
dimensional case so as to be considered a part of the usual scenery, such as 
the existence of a natural invariant measure, must be critically reexamined 
when infinite degrees of freedom are involved. For example, Jeans's conjec- 
ture which appeared up to now as a logical extension to the infinite- 
dimensional case of what has been considered a persuasive stochasticity 
criterion, i.e., energy equipartition, cannot be matched with a meaningful 
ergodic theory. Therefore if, despite this, tendency to equipartifion is kept 
as a signpost of stochastic behavior of the model, then recourse to other 
more sophisticated stochasticity criteria of the ergodic theory for finite 
systems such as the Lyapounov exponents must be automatically excluded. 
In particular we have shown here that equipartition excludes the possibility 
of finding some positive LCE. We would like to stress also that numerical 
evaluation of LCE in the present case, involves double limits which very 
likely cannot be interchanged: this problem appears to us as overwhelm- 
ingly difficult. 

It is fit to mention that the model has been also tested in Ref. 6 by 
means of a different "stochasticity parameter." However, as far as we 
know, in all works in which this parameter p has been introduced (11) and 
used s no justification at all was given regarding its relation to stochastic 
behavior. This parameter measures somehow the energetic involvement of 
one or more "oscillators" in the overall motion of the system and is defined 
in such a way as to take values ranging from zero (no energy exchange) to 
one (complete energy exchange). While it is obviously true that ergodicity 
implies p = 1, it is evident that the possible utility of this parameter rests on 
the validity of the converse statement. Now it is conceivable that by adding 
an integrable perturbation to an integrable system the "oscillators" asso- 
ciated with the unperturbed normal modes will share their energy to a less 
or larger extent depending on the spread of the new normal modes over the 
unperturbed ones. Therefore it looks hardly acceptable that this pa- 

s See papers (7-11) of Ref. 6. 
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rameter, per se, could distinguish between integrable and stochastic be- 
havior. 9 

Given all this, our analysis does not answer the question of whether, as 
far as one considers states of finite total energy, a tendency to statistical 
equilibrium, in the sense of ergodic theory at least, can take place or not. 
We may only recall the results of our previous numerical computations (4) 
which suggested a negative answer. This would mean that the toroidal 
structure of phase space as described in Theorem 1 essentially persists 
under perturbation. In other terms we are led to think that some kind of 
Kolmogorov-Arnold-Moser  theorem is valid for the problem at hand. 

It is possible that finite N-oscillators approximations of the BCL model 
exhibit a "Stochastic transition" at same value E N of their energy. In this 
event one should not disregard the possibility that E N ~ oe as N-~, oe. 

If this were true l~ one should expect good ergodic properties of the 
flow described in Section 5 in the phase space %_ 1. The BCL model might 
then provide a new dynamical model of Brownian motion (of the mechani- 
cal oscillator). 11 
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APPENDIX A 

We prove the Lemma of Section 2. 
It is convenient to factor X as 

~'1 x =  no x [c x x [ c x  

9 As matter of fact the regularity exhibited by the numerical experiments illustrated in Fig. (1) 
of Ref. 6 may be interpreted in terms of resonance energy exchange between the field nth 
normal mode with frequency % = (~c/21)n and the nonlinear mechanical oscillator with 
frequency w(E). Indeed, using the same notations as in Ref. 6 these two frequencies are 
equal when e + n/'l; this might explain Figs. 1-3. 

lo Some of the results of Ref. 6 might be indicative of this fact even though they have been 
presented as evidence of a different type of behavior not investigated here. However, the 
only investigations made in this direction, which could dispose of an effective control of N, 
failed to reveal any stochastic behavior (Ref. 12). The computational setup of Refs. 4 and 6 
are hybrid in the sense that they do not correspond to any definite N-oscillator truncation 
of the equations of motion. 

11 An exact dynamical model of Brownian motion is actually available for a particle linearly 
interacting with a one-dimensional, semi-infinite continuum: see, e.g., Ref, 13. In this model 
an essential role is played by the possibility of introducing a "translation representation" for 
the dynamics of the linear, infinite system. An analogous role might be played here by any 
eventual K-system property of the nonlinear, finite system. 
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* l  f2 s Also notice and write ~= (f1,f2,f3,(4) as ( =  ((1,f2), ~1~ lid ' 
that the function 

� 8 9  - l < x < - < O  
I~(x) = - �89 + l /2 ,  O <~ x < l 

belongs to H~(I )  and is such that 

(/z,v)Hd = v(0) Vv ~ H i ( I  ) 

It is now easy to check that 

a(~,n) = (~',~2)i~- (f~,n')L~+ s  ~1(f~ ,  . ) .~  (A.1) 

Clearly a(f,~?)= - a ( ~ ,  f)- By an elementary case of Rellich's theorem the 
embedding H I ( I )  ---> L2(I) is compact (and so is therefore H01 -->/~-). 

Boundedness of a(. ,  �9 ) follows from estimates of the type 

I(1',n2),:~l < mllf'l~:~llnall/,-4< mllfl l~llnllx 
(m the embedding constant) and 

Define G in X by 

a(~,~) = (G~,~) x V~,n E X (A.2) 

By the above, G is bou,ded and skew-adjoint: G + = - G. To see compact- 
ness of G, let {f.) be a sequence in X converging weakly to f so that 
G~,--) G~ weakly. By (A.1) 

II Gf.II: = a(f,, , G~,, ) (A.3) 
s, 1 

The sequence {(G~) 2} converges weakly in H 0 and so strongly in s 
to (G~) 2. Therefore 

( f l  ,( Gfn )2) fj--> (~l , (  G~)Z) Z 2 

and similarly 

Now.(A.3) and (A.I) show that II GI.II---> II G~II, thus GI. converges strongly 
to GI and so G is compact, 

Since form a(.,  .) is nondegenerate, zero is not in the point spectrum 
of G and G is invertible. Therefore T possesses a complete orthonormal set 
of eigenvectors. Among these one has the trivial cases z -- 0, y = 0 and u, v 
eigensolutions of the free vibrating string problem of odd parity. The 
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nontrivial eigenvalues if~ are found as the roots of 

wl 1 W2o - ~ 
ta (v)= o 

This has a double sequence ( ~  f~,} of solutions. The eigenvectors corre- 
sponding to ~,  > 0 are 

c _ 

sin ~2n c (Ixl - l)  
u n = A~ 

( ~ n ' )  _ _ a  , f ~  sin - -~  

iansin ~ (Ixl - 1) 

whereas the ones corresponding to g ,  < 0 are obtained from the u,'s by 
complex conjugation. 

APpI=NDIX B 

Rewrite (2) formally as 

t ( t )  = e Ttto "[- s  r( t -~)W(t(s))  ds (B.1) 

With the integral a Riemann integral in X (or %). The following partial 
results sum up in the proof of Theorems 2 and 3. 

I. Vt0 E %, 3 T  > 0 such that (A.1) has a unique continuous solution 
for t E J = [0, T] with t(0) = t0. 

Proof. Let Xr,,~0 be the set of t(t) ~ Co(J, %) such that ~(0) = to and 
supt~JlJ~(t)-  e~"t~ol [ < E. This is a complete metric space under the norm 
of Co(J, %). Then define S: 

~( t) ~ e 7"tto + s  7"(t-,)W(~(s) ) ds 

At least for sufficiently small T, S is a contraction in Xrlq~ o. This follows 
from 

II w(~ , )  - w(t2)II = - [ l (Ko,  5012(Ko, t , )  - [(Ko, 52)12(Ko, ~2)j 

< c([It l l l ,  Iltdl)lltl - ~dl (B.2) 

where c is a monotone increasing function of both its arguments. 
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II. The solution ~(t) of (B.1) ensured by the contracting mapping 
principle is certainly a local weak solution of (10) for t E J. Note that 
c(l[~01l + E~ll~01l + ~) alone determines how large a T one can choose. 

Ill. Let ~(t) be a (local) weak solution of (10). Then 

g(~(t)) = �89 II~(t)ll 2 + �88 4 [z  = (K 0,~)] 

is differentiable with respect to t, and E'(t) = O. 

Proof. Since koE D(T), Iz41 = [(g0,~)] 4 is C 1 in t. Thus one need 
only prove that II~ll 2 = Y~lc.2(t)l is differentiable with respect to t. The series 
~]c~(t)]  converges uniformly in J (by Dini's theorem). Looking at the time 
derivatives 

d le2 (t)l -- al2 Re(  Irp(~)12Vnrp(~)~. }[ < 2all~ll31V.~n[ 

one sees that Y,(d/dt)[c2(t)l converges uniformly in J, since so does ~ vn? n . 
Therefore II~(t)ll 2 is differentiable in t and 

d d 
27 11~112 = Y' 27 Ic"2(t)l = 2aRe{ Irp(~)12ep(~)(g~' ~) ) 

d 1 a[cp(~(t))14] J = _ d 

IV. (Uniqueness of the local solution.) Let ~1 " ~2 be weak solutions of 
(10) with ~1(0) = ~2(0) = z 0. By an argument similar to the one of III above, 
one sees that 8(0 = [[~l(t) - ~2(t)[] 2 is differentiable with respect to t, and 

6'(t) = 2 Re(~ I - ~2, W(~l) - W(~2)) 

whence ]8'(t)l < 2C,8 where C, = C(Ir~011 + elliS011 + e) was defined in I. 
Thus 6(0) = 0 implies 6(t) = 0. 

V. (Existence of global solutions.) 

Proof. This is a standard argument, relying on the a priori bound- 
edness of the local solution stated in III. Let T be the sup of the T's such 
that the argument of I holds in [0, T]. Since T is determined by C~ alone, 
and since II~(t)[I is bounded by E, by taking ~0 = ~(t) with t sufficiently near 
to T one could extend the solution beyond T, whence T = oo. 

Vl. The group property follows as usual from the uniqueness of the 
solution. From Eqs. (A.1), (A.2) 

II U,~', - U,,~211 < I1~1 - ~:211 + f o ' l l  W ( ~ I ( S ) )  - W(~2(s ) ) [ ]  ds 

< I1~'~ - ~211 + C(ll~(t)ll, 11~2(t) l l )~* l l~ l (S) - ~2(~)11 ds 
./o 
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and, since II~l(t)ll 2 and 11~2(t)[I 2 are bounded by E, E2: 

II~,(t) - ~2(t)ll < I1~,(0) - ~ 2 ( 0 )  l[ e c(e,, E2) t 

This proves Theorem 3. �9 

(B.3) 

A P P E N D I X  C 

The operator T extends straightforwardly to a skew-adjoint operator in 
%- 1. The same is true for W with the definition (10). The operators in %_ 1 
will be denoted in the same way as the operators in %. The evolution 

A 

operator Utx 0 = x( t )  satisfies an equation formally identical to (B. 1), where 
operators, and the Riemann integral, are to be understood in the %_ j 
sense. In fact, as ~ ~ % approaches x E %_ 1 in the %_ vnorm, Ut~ ap- 
proaches Otx uniformly on bounded subsets of the line. 

Since the same is true for e rtz, e 7"tx, and since W is uniformly continu- 
ous on bounded subsets of %_ 1, the above statement follows. 

UN(t) defined by the solutions of (20) satisfies 

Xu(t)  + UN(t)Xo = erNtxo + foter"(t- ')Wn(XN(S))ds (C.1) 

where T u = PNTPN, W n = PNWPN, PN being the projector (in % _ )  onto 
the phase space of N oscillators. Since PN is a spectral projection for T, 
T~v-~ T as N ~  oo in the strong resolvent sense, and so er~tx--> e Ttx, 
Vx E %-1 uniformly for t in bounded intervals. Therefore, for t E [0,0], 
0 > 0 ,  

[I UN(t)Xo -- Utx0[1-1 ~ IIeTN'Xo -- e 'xo[I- i  

+ fot[[ e T,,(,-s)W( x (s)) - e T(t-s)W( x (s))II- 1 Ks 

+fo~ll W(x(s ) )  - WN(XN(S))II-2ds 

< ~,~1)(t) + y(u 2) (t) 

-[- foot]] W(x (s)) - Pu WPN (x (s))H--1 ds 

+ fo tll WPN (x (s)) - WeN (XN (S))II-, ds 

< ~1) (t) + ~2)(t)  + ~'~3) (t) + K~fotllx(s) - x~v(s)ll_ads 

"y(ff)(t), i = 1,2, 3, are continuous, equibounded and infinitesimal as N---) ~ ,  



Preliminaries to Ergodic Theory of Infinite-Dimensional Systems 215 

for all t < 0. This yields 

itU=(t)x ~ - (itXo[[_ 1 < s 70) + y~2) + 7~3)](s)ds 

for all t < O, and thus limx~ ~ UN(t)x 0 = ~ftXo . 

APPENDIX D 

Let s be the vector space of rapidly decreasing complex sequences 
z = {c,}--i.e., of sequences such that Vk I lz l l~ ,  = ~nt22klC21 < m--wi th  the 
Fr6chet topology induced by the norms II �9 I lk -  The measure of IXN, o, as a 

% measure on the dual space s' of s ( s ' =  U n=l _ ,  after an obvious 
identification) has the characteristic functional (~6) 

. . . .  

X exp i ~,, ~kPk + aknkqk IX Mo(~,nj)  
- N  IJI~>N+I 

M 0 being the c.f. of w, and WN=exp{- -o- -2HN(q_N . . . .  PN)}, Z ES,  
c,(z) = ~,, + i~n~?n. 

The following manipulations are justified by the fast-decreasing char- 
acter of w (the infinite product of Mo's is omitted for simplicity): 

MN'~(Z) = ( " " " )CNs 7 " " J-oo('+~176 " " " dpNddpd~ 

_~Nhkf~qk)exp[ i_~N(~rd~X + ~ k q 2 )  ] 

[ ]E ? 1 _ _ _  --  ~'~2 2 1 (#)2 + ~ 2 )  2 
• exp 202 _ (/02 + kqk) exp 2t~176 2 

1 " + ~  r ' + o o  r + o o  + m  

[( += )I [( "i II •  iy @ - ~ X k p  ~ exp iO ~ -  )tkqka k 
- N  

+ N  2 
• exp i ~ (~kP~ + f~/kqk) 

- - N  

1 -~s 2 2 _ _ ( @ 2 + t p 2 )  2 
2 0  = ( p ~  + a k q ~ )  - 1 _ 2o~a 2 , 
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1 + o o  + o a  

+N 

x l I  
k = - - N  

(f?2dqexp(--l~2q2)exp[iq(~2"k--O~k~k)l}20.1 

f+~d(+~d [ (dP2+dp2)2]exp[i(ydp+O~)] 
".,-~o ~ . , - ~  ~ e x p  202 

oo + oo 0 4N 
N 2 

I I j = , a j  

- - E ( ~ - ~ x ~ )  ~ Xexp 7 y~ (ox~ - a~n~ exp 2 -  - N  
- N  

M('~,0)  is the Fourier transform of exp[--(x2 + y2)2]. Normal izat ion 
requires that m u ,  cf(O ) = 1, so that 

r a 2 2 
ON= dvf_+f aOM('/,O).--7-aT.2exp -T(O +v2) E~,2~ 

I ' I j= la j  --U ]J 
In the limit N o  ~ ,  

lira MN,o(z ) = Mo(z) 
N---~ ~ 

= c;7 ;7 oM( o) 

[ ~~ 7 - II('{ + iO)ko- z[12j x e x p  

- !  

{f+: s_: [ 1) c= dy dOM(y,O)exp -- T ( 0  2 +  7 2) 

M,(z) is cont inuous  as a function of z = { ~  + ifak~k} in the norm I[zll0. By 
Minlos's theorem, it defines a measure /,, on  s' concentrated on the set 

2 2 .j-2 ~ j ] p f  + a)q)[ < + oe, that is on %_ 1" To prove U t invariance of #0, 
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let  f :  %_  1 -'-> C be  a b o u n d e d  un i fo rmly  cont inuous  funct ion.  Then  

f j(x)a,o(X) 
<'<:% I f (O,  x l - -  f (Uu( t ) x ) ld tLo  

- I  

+ 

+f~_,If(x>-f(UN(t)x)Id#~.,o+ s f(x)d#~.,. - s f(x)dm 

The second  and  four th  terms above  are  < e, VN,  K > K~ since /XK, . 

OK-+~ #l~ entai ls  tha t  fgN d#K,o --> fgN d~o un i fo rmly  on  equ ibounded ,  equi-  
con t inuous  9 famil ies  (g lv(x)}  a n d  g N ( X ) = f ( U N ( t ) x  ) jus t  make  up  one  
such fami ly  [ thanks to the equicont inu i ty  of Ulv(t), that  can  be inferred 
f rom (B.3), and  to the un i fo rm cont inu i ty  of f ] .  The  l imits N ~  oo of the 
first and  th i rd  te rm vanish,  by  the result  of A p p e n d i x  C a n d  d o m i n a t e d  
convergence.  

Therefore  the l e f t -hand  side of the above  inequal i ty  is < e, Ve > 0 a n d  
thus it mus t  be zero. This is enough to p rove  Propos i t ion  3. 
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